Tumorhead, a Xenopus gene product that inhibits neural differentiation through regulation of proliferation.
نویسندگان
چکیده
Tumorhead (TH) is a novel maternal gene product from Xenopus laevis containing several basic domains and a weak coiled-coil. Overexpression of wild-type TH resulted in increased proliferation of neural plate cells, causing expansion of the neural field followed by neural tube and craniofacial abnormalities. Overexpressed TH protein repressed neural differentiation and neural crest markers, but did not inhibit the neural inducers, pan-neural markers or mesodermal markers. Loss of function by injection of anti-TH antibody inhibited cell proliferation. Our data are consistent with a model in which tumorhead functions in regulating differentiation of the neural tissues but not neural induction or determination through its effect on cell proliferation.
منابع مشابه
Identification of TH-B, a new oligomeric variant of the Xenopus morphogenetic factor, tumorhead.
The Xenopus laevis gene tumorhead (TH) is a regulator of cell proliferation of the ectodermal germ layer during embryonic development. TH overexpression results in increased cell proliferation within the developing ectoderm, causing an expansion of the neural plate. Conversely, loss of TH function results in inhibition of proliferation of ectodermal cells. Embryos with altered levels of TH prot...
متن کاملTumorhead distribution to cytoplasmic membrane of neural plate cells is positively regulated by Xenopus p21-activated kinase 1 (X-PAK1).
Tumorhead (TH) regulates neural plate cell proliferation during Xenopus early development, and gain or loss of function prevents neural differentiation. TH shuttles between the nuclear and cytoplasmic/cortical cell compartments in embryonic cells. In this study, we show that subcellular distribution of TH is important for its functions. Targeting TH to the cell cortex/membrane potentiates a TH ...
متن کاملSelf-regulation of Stat3 activity coordinates cell-cycle progression and neural crest specification.
A complex set of extracellular signals is required for neural crest (NC) specification. However, how these signals function to coordinate cell-cycle progression and differentiation remains poorly understood. Here, we report in Xenopus a role for the transcription factor signal transducers and activators of transcription-3 (Stat3) in this process downstream of FGF signalling. Depletion of Stat3 ...
متن کاملScutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...
متن کاملFrizzled 5 Signaling Governs the Neural Potential of Progenitors in the Developing Xenopus Retina
Progenitors in the developing central nervous system acquire neural potential and proliferate to expand the pool of precursors competent to undergo neuronal differentiation. The formation and maintenance of neural-competent precursors are regulated by SoxB1 transcription factors, and evidence that their expression is regionally regulated suggests that specific signals regulate neural potential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 128 17 شماره
صفحات -
تاریخ انتشار 2001